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Figure 4. Comparison of the dinuclear species H2+ and VI2+. Only the 
metal contributions to the singly occupied molecular orbitals are shown. 
" Estimate from a molecular model. b Reference 23. c Reference 24. d This 
work. e Reference 5. 

of this fact, in a previous paper10 we erroneously attributed biradical 
character to the species I2+. 

(20) The appearance of the spectrum is unaffected by changes in solvent and 
by dilution down to 1O-5 M. 

(21) N. D. Chasteen and R. L. Belford, lnorg. Cham., 9, 169 (1970). 
(22) Conformation of ?j-biphenyl in I: fully eclipsed, R(Cr-Cr) = 5.40 A; fully 

staggered, R(Cr-Cr) = 4.90 A; RESR = 4.68 A. 
(23) M. R. Churchill and J. Wormald, lnorg. Chem., 8, 1970 (1969). 
(24) The degeneracy of the HOMO of ferrocene (e2g, metal AO contributions 

Fe d x / , dx2_y2) is raised upon formation of the dinuclear complex Vl. 
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as compared with the bis(arene) complex. Furthermore, metal 
orbital overlap should be more effective in VI2+ (equivalent 
to 50% a, 50% 7T24) than in H2+ (equivalent to 25% a, 75% 5; 
see Figure 4). 
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Homonuclear and Heteronuclear Coupling 
in 5'-AMP as Probed by Two-Dimensional Proton 
Nuclear Magnetic Resonance Spectroscopy 

Sir: 

We have obtained the two-dimensional, homonuclear, J-
resolved, 1H NMR spectrum1-3 of 5'-adenosine monophos­
phate (5'-AMP).4 

The normal'H NMR spectrum of 5'-AMP5 (Figure 1 a) is 
complicated by strong homonuclear coupling combined with 
heteronuclear coupling to 31P, which are normally difficult to 
unravel. Two-dimensional NMR spectroscopy has allowed us 
to distinguish between homo- and heteronuclear coupling by 
inspection. 

The pulse sequence used (90°-T-180°-T-echo) causes 
transitions which are connected by homonuclear, scalar cou­
pling to be "stretched out" across the second dimension (F]),3 

whereas heteronuclear coupling causes transitions to appear 
side by side in the first dimension (F2). since the heteroatom 
is unaffected by the pulses. 

Figure 2 shows the two-dimensional spectrum of the ribose 
3', 4', 5', and 5" protons. The 3' proton shows two homonuclear 
couplings: one to the 2' proton and one to the 4' proton. Thus, 
to first order, the 3' proton resonates as a doublet of doublets 
stretched out over F\. By contrast in the 4' region we see two 
pairs of side-by-side transitions. The splitting within a pair is 
caused by long-range, heteronuclear coupling to 31P and the 

1H NMR SPECTRB OF D. IM 5'-HMF * 

H-S1, S" 

REBL SPECTRUM. 

SIMULATION. 

Figure 1. (a) The 90-MHz 1H NMR spectrum of the higher field ribose 
protons in 5'-AMP. The central part of the H-2' multiplet is overlapped 
by a peak due to HDO. (b) Simulation of the spectrum in Figure 1 a using 
5 and J values obtained from the 2D spectrum. 
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Figure 2. (a) The 2-D, homonuclear, ./-resolved, 1H NMR spectrum of 
the H-3', H-4', and H-5',5" protons in 5'-AMP at ambient temperature, 
(b) An outline sketch of the main peaks visible in Figure 2a, showing their 
origins. 

Table I 

coupling 

J(I ',T) 
J(TX) 
JO'A') 
j(4',y) 
J(4',5") 

value in Hz 

5.3 
4.8 
4.2 
3.3 
3.3 

coupling 

./(4',P) 
•Z(5',5") 
./(5',P) 
./(5",P) 

value in Hz 

1.9 
-12.0° 

5.3 
5.3 

Reference 5. 

splitting between pairs is due to homonuclear coupling to the 
3' proton. Each observed 4' transition is, in fact, the strong, 
central part of a multiplet due to coupling to the two 5' protons. 
Other parts of these multiplets were too weak to be observed. 
A similar coupling pattern is exhibited by the 5' protons, ex­
cept, in this case, the heteronuclear coupling is larger. The 
signals are also broader due to short T2's. This makes the de­
termination of the magnitude of the homonuclear coupling to 
4' inaccurate and obscures effects due to the possible non-
equivalence of the 5' protons. 

Additional peaks appear in the spectrum along lines of 
constant F2 corresponding to transitions in the conventional 
1H NMR spectrum. These extra signals are caused by the 
mixing of the transition at that particular F2 with other con­
nected transitions. This mixing can be due either to imper­
fections in the pulse or to strong coupling effects.36 Any peak 
in the two-dimensional spectrum is associated with two con­
nected transitions in the conventional NMR spectrum. The F\ 
frequency of the peak is exactly one half the separation between 
these transitions in F2.3 Using this guide we have been able to 
assign nearly all the peaks in Figure 2. 

Our analysis of the two-dimensional spectrum has enabled 
us to obtain both the homonuclear coupling constants and the 
couplings to 31P. The coupling constants are given in Table I. 
These were then used in a seven-spin, spectral simulation, 
shown in Figure lb. The correspondence with the observed 
spectrum is shown in Figure 1. 

In nucleic acids the conformation of the phosphate backbone 
is extremely important in determining the overall conformation 
of the molecule.5'7 Two-dimensional' H NMR not only allows 
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us to probe these backbone conformations (via the 31P-1H 
coupling constants) but simultaneously allows the determi­
nation of all the homonuclear coupling information.8 
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An Investigation of the Fluidity of 
Alkyl Benzenesulfonate Aqueous Micelles by 
Fluorescence Spectroscopy 

Sir: 

The influence of supramolecular assemblies on chemical 
changes has lately become of increasing interest owing to the 
realization that many important biological processes occur at, 
or close to, such assemblies (membranes, peptides, nucleic 
acids) where effects such as charge density and amphipathic 
environment may be important.' Surfactant micelles have been 
extensively used to model the biological structures. This is 
justified by the fact that the same forces are responsible for 
holding biological and micellar aggregates together. Also the 
lipophilic boundary and hydrophilic regions of micelles find 
their counterparts in cellular structures. The popularity of the 
surfactant micelle as an experimental model arises from the 
ready availability of pure materials and the innate feeling that 
micelles offer a more tractable problem for quantitative in­
vestigation. 

The use of fluorescent probes for studying the phenomena 
of micellization and solubilization has become widespread.2 

Thus, large aromatic hydrocarbons such as methylanthracene, 
pyrene, etc., have been employed as extrinsic probes to obtain 
information on rotational diffusion (through fluorescence 
depolarization)34 and translational diffusion (through the 
dynamics of excimer formation).5-6 However, the question 
must be raised as to whether a micelle which incorporates a 
relatively large guest residue is the same entity as the micelle 
without the probe.7 Here we report some preliminary studies 
using a variety of alkyl benzenesulfonate isomers which are 
surfactants having an intrinsic fluorescent probe. These studies 
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